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Shallow three-dimensional flows with 
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The three-dimensional steady flow of a shallow viscous liquid with non-uniform 
surface tension has been considered when the variation in surface tension results 
from the presence of an insoluble chemical contaminant on the surface. Similarly 
solutions for the particular problem of a channel flowing into a semi-infinite 
lake have been obtained, the depth and surface concentration at  infinity being 
specified. 

1. Introduction 
There are many physical situations in which fluid motion takes place with 

variable surface tension, and in recent years there has been considerable interest 
in such phenomena; Kenning (1968) refers to a hundred publications relating 
to work in this field. The variation of surface tension along the interface of a 
fluid gives rise to tangential stresses which effect the motion of the fluid. Variation 
in the surface tension can occur for several reasons; examples cited by Levich 
(1962) are variations in the surface temperature and electric charge and changes 
in concentration of a surface active material. 

Fluid flow with a surface active contaminant is of industrial importance and 
also takes place under natural conditions. A variable surface tension has probably 
the greatest influence on shallow flows and a two-dimensional problem of this 
kind has been considered by Yih (1968). In  Yih’s problem two reservoirs of fluid 
are connected by an open shallow channel with the depths of fluid and surface 
concentration of contaminant maintained in each reservoir. Steady motion takes 
place in the channel under the action of liquid head and surface tension variation. 

2. Statement of the problem 
The purpose of our paper is the extension of Yih’s analysis to three-dimensional 

flows. A thin layer of insoluble surface active material is assumed to lie on the 
surface of a region of shallow liquid, the thickness of the layer being negligible 
compared to the depth so that it is permissible to define the concentration in 
terms of the density c per unit area. There is no transport of contaminant into 
the main body of the liquid; this occurs only along the surface. The surface tension 
cr’ is assumed to be related linearly to the concentration, namely 

cr’ = cr; + yc, 
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in which u; and y are constants. For the purpose of our analysis it is convenient 
to introduce the relative surface tension u where 

a = a‘--& 

and we note that (T generally takes negative values. 
The variation of concentration and hence surface tension gives rise to tractive 

forces along the surface which through the action of viscosity are transmitted 
to the bulk of the fluid. The spatial variation of hydrostatic head and surface 
tension will produce a steady flow of varying depth, but we shall assume that 
such changes are sufficiently small for the surface curvature to  be neglected. 

The steady state problem considered by Uih is the determination of u and the 
depth h of liquid in the channel connecting the two reservoirs. Depending on the 
depths of the reservoirs and the direction of flow of the contaminant, two dis- 
tinct situations are possible, where the bulk flow is in the direction of increasing 
surface tension and where it is in the direction of decreasing surface tension. 
I n  this paper we shall consider in particular the corresponding problem in which 
a channel of fluid flows into a semi-infinite lake, with the surface material either 
flowing from or into the lake depending on the relative states of contamination. 

3. Equations of motion 
With (2, y, z )  as Cartesian co-ordinates, z is measured vertically from the 

horizontal bed of the liquid, which is locally of depth h(x, y). If (u, v, w) are 
Cartesian components of velocity, the diffusion equation for the surface material 
can be written in terms of a( = yc), and is 

:xi E) :y( :;) a a 
--(uu)+-(vu) = -  D- +- D- 
ax ay 

a t  2 = h. Here D is the diffusivity of the material in the surface, and this will 
be assumed to be constant, as also will be the viscosity p and density p of the 
liquid. 

The equations of motion of the liquid are simplified, as in the case of lubrication 
theory, in that inertia terms are negligible and also the dominant element only 
in the viscosity terms need be retained. Thus, i f p  denotes the difference between 
the fluid pressure and the atmospheric pressure, the equations become 

2 - a2u 
ax - PZF 3 1  

with the equation of continuity 

au av aw 
ax ay a2 
-+-+- = 0. (3.3) 
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Boundary conditions at z = 0 are 

u = v = w = o ,  (3.4) 

and at the free surface z = h, continuity of stress components requires that 

p7& = - 9  

and 

(3.5) 

in which the assumption of small surface curvature is implicit. Finally, there is 
the kinematical boundary condition at the free surface, namely at z = h, 

ah ah 
w = u-+v- .  

ax ay 

4. The field equations for IT and h 
Both u and h are functions of x and y only, and so also are aplax, ap/ay (from 

equations (3.2)). Thus a solution of equations (3.2) for u and v, satisfying the 
boundary conditions (3.4) and (3.5), is 

and the solution for p is clearly 
I, = Pg(h-z). 

Levich (1962) and Yih (1968) obtained expressions similar to these for the two- 
dimensional channel flow problem. 

With the introduction of the two-dimensional gradient operator 

v = (alax, alay, o), 

VP = p g m  result (4.2) yields 

and thus from (4.1), the velocity components in the surface are given by 

h 

P 
(Uh, V h )  = - V(U- &pgh2). 

These surface values, when substituted in the diffusion equation (3.1), give 
the equation 
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The equation of continuity (3.3), when integrated with respect t o  between 
the limits z = 0, h, yields with use of result (3.6), 

After performing the integration with respect to  z of expressions (4. l), this last 
equation becomes 

Equations (4.3) and (4.4) are thus the required field equations. 

5. Similarity solution of the field equations 
The field equa.tions appear to  be intractable as they stand, but it is possible 

to  derive solutions of physical interest in the following manner. Postulate the 
existence of scalar fields $(x, y), +(x, y) defined by 

(5.1) 

(5.2) 

(5.3) 

huV(n-  &Pgh2) -pDVu = pVQ, 

h2V(u - QPgh2) = 2pV$. 

v2+ = V2$ = 0. 

Equations (4.3), (4.4) imply therefore that 

Further, on forming the curl of either (5.1) or (5.2) we derive the result 

V h x Q a  = 0; 

i.e. (5.4) 

Thus h and u are functionally related, so there exists a family of curves in 
the (2, y) plane on each member of which h and u assume constant values. We 
may thus introduce a curvilinear co-ordinate C(x, y) so that the family is the 
system C(x,y) = const., 

and h and c are functions of 6 alone. If further we set $ = kl(<- l), $ = k&- 1 ), 
where k,, k, are constant, then 5 must be harmonic, and equations (5.1), (5.2) 
become the ordinary differential equations 

d 
h2 - (r- &Pgh2) = 2 k 2 , ~ ,  (5 .6 )  

(15 

and these are equivalent to  the equations derived by Yih for the two-dimensiond 
problem. We note also, from expressions (4.1), that  the component of fluid 
velocity parallel to  the base z = 0 is everywhere in the direction V t .  
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The nature of the constants k,, k, is not apparent from this approach, but 
alternatively the direct postulation of a similarity solution of (4.3), (4.4),  namely 
c = (r(lJ, h = h( t )  leads to the conclusion that 6 must be harmonic and (4 .3) ,  
(4 .4)  then have first integrals as exhibited in (5 .5 ) ,  (5.6). Thus k,, k ,  are constants 
associated with the surface and bulk flows respectively. 

6. The characteristic equation 
Equations (5.5) and (5.6) can be rewritten in the form 

It is clear from the form of these equations that it is necessary only to consider 
the two cases k,, k, > 0 and k, < 0, k, > 0. The co-ordinate E is already dimen- 
sionless, and the following substitutions may be used to reduce equations (6 .1) ,  
(6.2) to non-dimensional form: 

The above equations now become: 
dY ci 

( X Y - 1 ) -  = - ( X - Y ) ,  a< x 
( X Y - 1 ) -  CJX = - ( 3 X 2 - 4 X Y + l ) .  P 

at x3 

The characteristic, or phase-plane, equation deduced from this pair is thus 

dY C X , ( X - Y )  
ax - 3 X 2 - 4 X Y + l ’  
_ -  

where C = alp. 
(ii) k,  < 0, k ,  > 0. 

In  this case the substitutions 
3kl k,  @ B = - 6 , ~ D k , k , ,  01 = ~ 

2DB3’ B = w B ’ \  

2Bt Y B3X 
(r=- h=--- 

3k, kl ’ 
lead to the equations 

dY a 
x ( X Y - 1 ) -  = - ( X + Y ) ,  
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with characteristic equation 
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(6.10) 
dY CX2(X+ Y) 
dX = 3X2+4XY-17 

and C = alp. 
Since h is essentially positive and u negative, the region of physical interest 

in both (i) and (ii) corresponds to X > 0, Y < 0. Also C is positive in both cases, 
with a, /3 positive in (i), and negative in (ii). 

7. Diffusion from a channel into a semi-infinite lake 
The lake occupies the region x 0 in the (x, y) plane and the channel extends 

in the negative x direction, its mouth being represented by the line x = 0, 
- u < y < a. It is supposed that k,, k, > 0, and that the following boundary con- 
ditions apply: 
u and h have constant prescribed values on x = 0, ly/al < 1 ; u -+ ul, h + h, 

(ul, I t ,  constant) as x/a and ly/u] + CO; Q + (T,, h +- h, on x = 0, ]y/al > 1. 
Clearly x, y can be made non-dimensional by a simple change of variable, so 

that ifthey are now interpreted in this dimensionless form, the harmonic function 
[ can be set to have boundary conditions 

6 = 0, for x = 0, Iyl < 1, 

6 = 1, for x = 0, IyI > 1, 

t-+ 1 as 2, IyI +a. 

(The region in which a solution is required is z 

be written 

0.) 
A solution of Laplace's equation suitable for these boundary conditions can 

Thus 

and hence from the theory of Fourier transforms, 

2 tsinh 
= (71) n. 

Hence 

and evaluation of the integral now leads to the result 

1 2x 6 = 1--  tan-, 
7r 

The curves 6 = const. are thus 

(z + cot + y2 = cosec2 (nt), 
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which is a system of coaxal circles, with common points (0, l), centres 
( - cot (nc), 0) and radii cosec (nc). 

Some degree of idealization is involved in solving the problem subject to the 
above boundary conditions. What one would expect physically are rapid changes 
in contaminant concentration and liquid depth along the boundary near the 
mouth of the channel but that these quantities remain nearly constant there- 
after. Our solution has transformed the changes into the singular points (0 , l )  
and (0, - I) at the corners of the channel. Such an assumption does in fact imply 
that the solution is not valid near the corners since the surface curvature will 
not be negligible in these regions. 

We show that the boundary conditions are compatible with the requirement 
that the components of surface velocity at  the edge of the lake shall vanish. The 
conditions 

uR = wh = 0, for x = 0, IyI > 1,  

imply that 

With changes of variable (6.3), this is equivalent to 

ax -px- = 0. 
dY 

d c  
E = l :  - 

dE 

(7.3) 

(7.4) 

The condition (7.4) must be compatible with differential equation (6.6), so that 

from which it follows that X = 1, for all Y .  This boundary value for X has been 
used in subsequent numerical integrations. 

8. Numerical results 
This section refers to the solution of equations (6.4) and (6.5), but for the 

purpose of discussion it is convenient to refer also to the particular physical 
problem of $7. The trapezoidal rule, with one iteration, was used to solve the 
equations, and the calculations were performed on the IBM 7094 computer at  
Imperial College. 

For given physical parameters, the ratio k,fk, determines the dimensionless 
height X in terms of the physical height h, and also the value of C. Equations (6.4), 
(6.5) were solved for X and Y in the range 0 < 6 < 1, corresponding to the whole 
of the physical space in 3 7. As explained in 8 7 the fixed height X = 1 was taken 
at = 1; the value of Y at the same point was set at  - 1. For the solutions pre- 
sented here, the value of C (=  alp) was set at  1, 10, and 0.1 respectively, but a 
and p were increased separately for each case. The corresponding graphs of X, Y 
versus 6 are displayed in figures 1, 2, and 3. From the viewpoint of the problem 
considered in 0 7, these solutions represent a situation in which the outflow from 
the channel has a lower concentration of surface contaminant than that existing 
on the lake at  great distances from the channel mouth. Thus Y decreases from a 
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small negative value at f; = 0 to the value - 1 at f; = 1, and in each case the 
decrease appears to be monotonic. Essentially, in place of prescribing X and Y 
at = 0, the values of a and p have been prescribed. Thus the solutions yield 
the corresponding values of X and Y at f; = 0. In  particular the computations were 

0.2 0.4 0.6 0-8 1 .o 
I 

0.2 0.4 0.6 0.8 1.0 
I I I 1 I 

- 0.2 

- 0.4 

Y - 0.6 

-0.8 

- 1.0 

FIGURE 1. Curves of X and Y versus 6 for C = 1 .  

arranged to produce, for each value of C, one solution for which the value of Y 
was close to zero at  6 = 0. Such a solution can be seen in each of the three figures, 
and represents a situation in which the outflow from the channel is almost free 
of surface contaminant. 

9. Discussion 
The comparison of equations (5 .5 )  and (5 .6 )  with the corresponding equations 

of the two-dimensional problem shows that the constants, k,, k, are associated 
with the surface and bulk flows respectively. In the case of flow from a channel 
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into a semi-infinite lake they are proportional to  the constant surface flux and 
constant bulk flux per unit width of channel. I n  view of the relationship between 
surface tension and surface concentration, the condition k, > 0 implies that  
surface material is flowing out of the lake and here the bulk flow is in the direc- 
tion of falling surface tension. Similarly k, < 0 implies that contaminant is 
flowing into the lake, with the bulk flow in the direction of increasing surface 
tension. 

0.2 0.4 0.6 0.8 1 .o 
5 

0.2 0.4 0.6 0.8 1 .o 
I 1 I I I 0 

- 0.2 

-0.4 

Y 

-0.6 

-0.8 

- 1.0 
FIGURE 2. Curves of X and Y versus E for C = 10. 

Solutions of the flow equations have been obtained in similarity form, but 
such solutions will not always exist since it may not be possible t o  satisfy the 
boundary conditions. I n  the problem of a channel flowing into a semi-infinite 
lake the situation has been idealized to  some extent by assuming a constant 
depth and constant concentration of contaminant across the mouth of the 
channel. The similarity solution implies that maximum changes in surface tension 
occur along lines of greatest slope in the surface, which appears to be a reasonable 
result on physical grounds. 

In  his analysis of the two-dimensional channel flow problem, Yih considered 
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two physical situations-where the bulk flow is zero, and where the velocity 
component in the surface is zero, respectively. The solutions corresponding to 
zero surface flow appear to be inconsistent since the equation of continuity is 
not satisfied. A more serious error arises in connexion with equation (1)  of Yih’s 
paper, which is essentially the transport equation for the surface contaminant. 
The quantity used by Yih is the relative surface tension, which for an insoluble 
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0.2 0.4 0.6 0.8 1 .o 
F, 

0.2 0.4 0.6 0.8 1 .o 
I I I I 1 

FIGURE 3. Curves of A’ and Y versus 6 for C = 0.1 

surface active agent is generally negative. This invalidates the discussion con- 
cerning the possible instability of the flow, since inequalities of the kind con- 
sidered, equation (20), can no longer arise. The result that the flow is always stable 
may be obtained by examining the phase plane equation (6.6) of our paper, the 
region of physical interest being X 2 0,  Y < 0. Possible cusp-like solutions are 
associated with integral curves crossing the curve X Y  = 1. Associated with 
equation (6.6) are two singular points, (1,l) and ( -  1, - 1); for a certain range of 
the parameter C a limit cycle encloses the point ( 1 , l )  but this lies entirely in the 
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region X > 0, Y > 0. It follows that flow instabilities associated with the cusp 
curve or with a limit cycle cannot arise. 

Yih (1969) has recently considered the three-dimensional motion of a shallow 
liquid layer with variable surface tension, for the situation where A u  B pgh;, 
Au being a characteristic change in u and h, a vertical scale. Under these condi- 
tions the flow is independent of gravity and the pressure constant throughout 
the fluid. He finds the depth and surface tension to be functionally related and 
shows that a simple polynomial of the depth is a harhonic function of the 
horizontal co-ordinates x and y, The flow near vertical boundaries is dealt with 
by considering a velocity boundary layer whose thickness is of the same order as 
the depth. An explicit solution for the velocity distribution in the layer is given, 
for the case where the angle of contact between the free surface and the boundary 
is &T. 
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